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Dennis, P.W. 2018. Consistent young earth relativistic cosmology. In Proceedings of 
the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 14–35.  
Pittsburgh, Pennsylvania: Creation Science Fellowship.

CONSISTENT YOUNG EARTH RELATIVISTIC COSMOLOGY

Phillip W. Dennis, 1655 Campbell Avenue, Thousand Oaks, California 91360, pwdennis@earthlink.net
ABSTRACT
We present a young earth creationist (YEC) model of creation that is consistent with distant light from distant objects 
in the cosmos.   We discuss the reality of time from theological/philosophical foundations. This results in the rejection 
of the idealist viewpoint of relativity and the recognition of the reality of the flow of time and the existence of a single 
cosmological “now.”   We begin the construction of the YEC cosmology with an examination of the “chronological 
enigmas” of the inhomogeneous solutions of the Einstein field equations (EFE) of General Relativity (GR).  For this 
analysis we construct an inhomogeneous model by way of the topological method of constructing solutions of the 
EFE.  The topological method uses the local (tensorial) feature of solutions of the EFE that imply that if ( ),M g

 
is a 

solution then removing any closed subset X of M is also a solution on the manifold with AM M X= −  and the restriction 
AA Mg g= . Also, if ( ),A AM g

 and ( ),B BM g are solutions of the EFE in disjoint regions then the “stitching” together of 
( ),A AM g

 
and ( ),B BM g with continuous boundary conditions is also a solution.  From this we show conceptually how 

an approximate “crude” model with a young earth neighborhood and an older remote universe can be constructed.  
This approximate “crude” model suffers from having abrupt boundaries.  This model is an example of a spherically 
symmetric inhomogeneous space-time.  We discuss the class of exact spherically symmetric inhomogeneous universes 
represented by the Lemaître-Tolman (L-T) class of exact solutions of the EFE.  A more realistic model refines this 
technique by excising a past subset with an asymptotically null spacelike surface from the Friedmann-Lemaître-
Robertson-Walker (FLRW) cosmology.  We build the model from the closed FLRW solution by selecting a spacelike 
hyperboloidal surface as the initial surface at the beginning of the first day of creation.  This surface induces, by way 
of embedding into FLRW space-time, an isotropic but radially inhomogeneous matter density consistent with the full 
FLRW space-time.  The resulting space-time is a subset of the usual FLRW space-time and thus preserves the FLRW 
causal structure and the observational predictions such as the Hubble law. We show that the initial spacelike surface 
evolves in a consistent manner and that light from the distant “ancient” galaxies arrives at the earth within the creation 
week and thereafter. All properties of light arriving from distant galaxies retain the same features as those of the 
FLRW space-time.  This follows from the fact that the solution presented is an open subset of the FLRW space-time 
so that all differential properties and analysis that applies to FLRW also applies to our solution. Qualitatively these 
models solve the distant star light problem and from a theological point of view, in which God advances the (cosmic) 
time of the spacelike hypersurfaces at a non-uniform rate during the miraculous creation week, solve the distant light 
problem.  We conclude by briefly discussing possible objections of some of our key assumptions and showing that 
a relativist cannot consistently object to our assumptions based on the merely operationalist point of view that an 
absolute spacelike “now” cannot be empirically determined.
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general relativity, young earth cosmology, distant starlight, presentism, 3+1 formalism
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INTRODUCTION
It is well known that one of the large conundrums of young earth 
creationist (YEC) models is the cosmological issue of reconciling 
a large universe with a young earth.  Given that the universe is 
only 6000 years old then no object further than ~6000 light years 
would be observable today.  A large universe with a uniform 
global speed of light of 83 10 /m s×  requires a large light transit 
time from distant objects.  Since the current size (diameter) of the 
observed universe is widely considered to be 92 billion light years, 
the transit time would seem to require the age of the universe, 
on the whole, to be in the order of tens of billion years. [Note: 
Using a radius of 46 Gly for the observable universe and assuming 
a Minkowski metric (flat universe) yields a light transit time of 

46 billion years.  The Minkowski result is merely a back of the 
envelope estimate.  However, the universe is not Minkowskian.  
It is generally known that such a calculation is invalid in general 
relativistic cosmological models as the curvature and expansion of 
the universe leads to different results.  One less widely recognized 
effect of expanding space is that space can expand faster than 
the speed of light while the local speed of light is constant.  This 
explains how the observable size can be greater than the speed of 
light times the age of the universe. Actual light transit times in GR 
need to be computed using null geodesics and integrating the time 
along the geodesic by way of the metric tensor.  Such a calculation 
leads to the usually quoted age of ~13.8 billion years.]



There have been a variety of attempts to solve this discrepancy; 
these include:
•	 Tired Light Model (spatial variation of speed of light)
•	 c-Decay Model (temporal variation of speed of light)
•	 Pseudophos theory (“false light,” light created in transit but not 

actually emitted from source, hence star image is an illusion)
•	 “White Hole” models (General Relativity based models)
Of these, the “white hole” models were potentially the most 
promising as they were based directly on general relativistic 
physics.  
None of these models, as currently developed, however, have 
adequately solved the starlight issue.  They all suffer from either 
conflict with other observational data, require theologically 
untenable assumptions, are of an ad hoc nature, or have utilized 
faulty mathematics/interpretations of metrics and coordinates.  
Faulkner (2013) discusses the issues with these models (and 
others).  A rigorous and consistent solution is thus still needed.  
Presented herein is what I believe to be a satisfactory approach to 
the starlight problem based on inhomogeneous space-times with 
appropriate relativistic initial conditions.  The model relies more on 
a consistent application and interpretation of a presentist philosophy 
of time and the relativistic nature of time based on Christian 
presuppositions rather than on mere technical mathematical details 
of the several models presented. In fact, I will present one model 
with an alternative miraculous interpretation of the time aspects of 
the geometrodynamics during the creation week.  In this regard, 
I agree with Faulkner (2013) when he states we have been: “… 
thinking primarily in terms of a physical explanation for the light 
travel time problem, when the solution may be far simpler and more 
direct” (emph. added).  I leave it to the reader to assess whether the 
proposed solution here is “far simpler and more direct.”
It should be emphasized that the models I present are still first 
approximations; nevertheless, when interpreted properly they 
do solve the starlight travel problem.  More exact models can be 
developed from the framework presented herein.  It is my hope 
that young earth physicists trained in GR can take the framework 
presented and produce models with higher fidelity that fit 
observational data.     
To motivate the examination of inhomogeneous models, we note 
that there has been a long history of physicists stating that the 
homogeneous cosmological models, e.g. Friedmann-Lemaître-
Robertson-Walker (FLRW) model are an oversimplification of the 
physical universe and are best viewed as first order approximate 
models of the universe.  Examples are Dingle (1933) and Tolman 
(1934). The reader is encouraged to consult Krasiński (1997) for a 
history of the research on inhomogeneous models.  
As more recent observational evidence of large scale structures in 
the universe has accumulated the study of inhomogeneous models 
has taken on renewed interest. These recent observations have 
thereby placed doubt on the “cosmological principle.”  Examples 
of such structures include galaxy filaments, “great walls” e.g. 
the Sloan Great Wall (SGW), superclusters and voids.  Several 
structures larger than the theoretical size limit of 1.2 Gly (see 
Yadav, 2010) for the cosmological principle have been found.  
These are (year of discovery in parentheses): 

Name Size (Giga Light 
Years)

Hercules–Corona Borealis Great Wall 
(2014)               10

Giant GRB Ring (2015)	 5.6

Huge-LQG (2012-2013) 4

U1.11 LQG (2011) 2

Clowes–Campusano LQG (1991) 	 2

Sloan Great Wall (2003)   	 1.37

Clowes et al. (2013), in their study of the Huge-LQG, present 
recent evidences of departures from homogeneity.  In particular, 
they state, “In summary, the Huge-LQG presents an interesting 
potential challenge to the assumption of homogeneity in the 
cosmological principle.” In addition, Krasiński (1997, p.283) 
presents the argument that the existence of gravitational lensing 
implies that the universe cannot be conformally flat. Consequently, 
he notes that the “universe is not FLRW within the limits set by 
observation.”   

In light of such, the homogenous FLRW solutions can only 
be viewed as first-order local approximations that are useful 
conceptual tools for interpreting average cosmological effects. It 
is generally recognized that inhomogeneous models are needed to 
represent our actual universe. Examples of closed inhomogeneous 
spherical cosmologies can be found in Zel’dovich (1984) and 
Sussman (1985).  The treatise by Krasiński (1997) is also an 
invaluable reference.

The outline of this paper is as follows.

(1) We begin with a theological/philosophical discussion of the 
nature of time.  This discussion concludes with the biblically 
uncontroversial view that time is real and that only the present 
“now” is real.  This view is termed “presentism.” This presentist 
interpretational framework of GR is a major point of this paper.

(2) Having resolved the time issue, we then discuss the theoretical 
basis of the proposed solution which is the General theory of 
Relativity (GR). We consider the time development of the standard 
FLRW cosmological solutions.  It is well known that such models 
predict a lifetime for the universe which is a function of the matter 
density.  This implies that the lifetime of different regions in an 
inhomogeneous universe will be different.  That feature has been 
the subject of many investigations into structure formation in the 
universe (such as the large scale inhomogeneities listed above).  
Within that discussion we explore potential cosmological solutions 
by examining inhomogeneous cosmologies via the “stitching 
method.”   The “stitching method” consists of cutting regions 
from different solutions of the Einstein field equations (EFE) and 
“stitching” them together at their boundaries subject to certain 
continuity conditions.  Such models will provide the theoretical 
framework for the YEC cosmology. 
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(3) We then examine general inhomogeneous models.  These 
considerations all point to a solution which is based on the 
recognition that the EFE depend upon the specification of an 
initial condition specified on a given initial spatial hypersurface.  
The general inhomogeneous solution shows that the time of the 
initial spatial hypersurface is arbitrary within the mathematical 
framework of GR.

(4) Finally, utilizing the freedom mentioned in (3) to choose the 
initial creation hypersurface, we examine a cosmological solution 
using a non-uniform initial density that is constructed by choosing 
an asymptotically null spacelike initial surface within the FLRW 
manifold as the initial creation hypersurface at the beginning of 
day one.  We discuss this model and show that it solves the distant 
light problem.

(5) In closing, we propose that possible future research in YEC 
cosmologies might benefit from using the 3+1 formulation of the 
EFE in which a spacelike initial surface (3-metric ijγ  and metric 
3-momentum ijπ ) is integrated forward in time by way of a 
Hamiltonian approach.  The 3+1 formulation directly corresponds 
to the presentist philosophy of time, and the initial data can be 
specified on an initial creation spatial hypersurface and its temporal 
development examined.

(6) We then summarize our results in the conclusion.

A few words on notation and conventions.   Since we will be 
frequently analyzing spacelike sections of the metric we will use 
the metric signature ( , , , )− + + +  for the metric two-form: 2ds g dx dxµ ν

µν=
Greek indices range over the values 0,1,2,3.  Latin indices are used 
for the three spatial dimensions and range over the values 1,2,3.  
We employ natural units.  Newton’s gravitational constant 1G =
and the speed of light 1c = .  Formulae containing masses can be 
converted to MKS units by replacing a mass m by 2/Gm c .

For convenience of analysis we restrict our attention of solutions 
with a zero cosmological constant. 

Since we will be extensively examining time dependent space-
times exhibiting spatial isotropy, the metric components in the 
two-dimensional subspace spanned by (x0, x1) will be functions 
only of x0 (time) and x1 (radial coordinate).  To avoid excessive 
typography, we will regularly employ the following abbreviations

0

R RR
x t
∂ ∂

= ≡
∂ ∂



and
1

R RR
x r
∂ ∂′ = ≡
∂ ∂ .

Finally, we will frequently use 
2 2 2 2sind d dθ θ ϕΩ = +

for the metric on the two-dimensional unit sphere.

THEOLOGY AND THE PHILOSOPHY OF TIME
As mentioned in the Introduction, our solution to the starlight 
and time problem, though fully based on the mathematics of the 
EFE of GR, will rely essentially on a coherent philosophical and 
biblically sound interpretational framework for the equations of 
GR.  As such, we begin with a discussion of the nature of time 
from both the biblical and philosophical perspectives as this is the 

central framework for the solution to be presented.  We will, in 
particular, examine two philosophies of time called “presentism” 
and “eternalism.”  As we shall see, relativity theory does not, in 
itself, compel one to adopt either of these philosophies.  A relativist 
can be either an eternalist or a presentist.  A complete discussion 
of the philosophy of time cannot be fully addressed in the compass 
of this article.  Those for whom the idea of presentism is new are 
encouraged to consult the literature on the subject; and in particular 
see Unger and Smolin (2015), Ellis (2012), Whitrow (1980),and 
Reichenbach (1956).

The philosophical debate on the nature of time goes back at least 
to Parmenides and Heraclitus, whose philosophies embody the two 
modern views of time.  For Parmenides unity was absolute and 
therefore change, along with time, was an illusion; thus, he believed 
in the unreality of time, or that reality is timeless.  Opposed to this 
view was Heraclitus who held that unity is an illusion and that 
change is the absolute metaphysical principle.  These two views 
are the perennial opposing philosophical positions on time.   

In modern parlance, these two antithetical views are generally 
referred to as “eternalism” and “presentism.”  

“Eternalism” is the philosophy that time is an illusion; that past, 
present and future events (referred to via tensed verbs) are eternally 
existing in a universe in which time has been “spatialized.” It is a 
universe in which there is no “now” – no unique “present.”  It is 
sometimes called a “block-house” universe in which nothing really 
happens.   

“Presentism” is the contrary view that the present is real; that there 
is an actual real moment called “now,” a present moment that 
continually passes.  The past is forever gone, the future will be.

Now fast forward to the 20th century.  The philosophy of the nature 
of time took a dramatic turn in Einstein’s theories of relativity.  

From that moment scientists and philosophers took up a putative 
scientific viewpoint of the relativity of time and used it to argue 
for the unreality of time.  Eternalism rose to the ascendency – 
apparently supported by the theories of relativity.   

This drift toward a “spatial” view of time and the acceptance 
of eternalism was, no doubt, encouraged by the mathematical 
formulation of the theories of relativity in which space-time 
is conceptualized as a four-dimensional Minkowski space. In 
Minkowski space, time and space are unified in a four-dimensional 
manifold (“space-time”) with a (local) pseudo-Euclidean “metric” 

2 2 2 2 2 2ds dx dy dz c dt= + + − .                              	                (1)

This presents the notion that all events are locations in a four-
dimensional space with coordinates ( , , , )x y z t  that locate events, 
and with space-time intervals between events computed via the 
metric above, much like spatial distances.

It is generally well known that Einstein and Weyl were advocates 
of the spatialized time of eternalism. Einstein summarized his 
view as follows (Calaprice, p.75): “For us believing physicists, the 
distinction between past, present and future is only a stubbornly 
persistent illusion.”

Einstein based his belief upon the impossibility, according to the 
theory of relativity, of any operational determination of “now,” and 
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supposedly the lack of a unique objective distinction between past 
and future, since these apparently depend on the reference frame.  
As he stated, “The four-dimensional continuum is now no longer 
resolvable objectively into sections, which contain all simultaneous 
events; “now” loses for the spatially extended world its objective 
meaning. It is because of this that space and time must be regarded 
as a four-dimensional continuum that is objectively unresolvable” 
(Einstein, 1994, p. 411).

These quotes provide a succinct description of Einstein’s 
philosophy of time.

As Whitrow (1980, p. 4) noted, this viewpoint was concordant with 
the idealist philosophy. He writes:

“The elimination of time from natural philosophy is 
closely correlated with the influence of geometry. 
... The primary object of Einstein’s profound researches on 
the forces of nature has been well epitomized in the slogan 
‘the geometrization of physics’, time being completely 
absorbed into the geometry of hyperspace. Thus, instead 
of ignoring the temporal aspect of nature as Archimedes 
did, post-renaissance mathematicians and physicists have 
sought to explain it away in terms of the spatial and in 
this way they have been aided by philosophers notably the 
idealists.” (emph. added)  

As is usual, attempts to analyze time usually smuggle in hidden 
references to other temporal processes, resulting in viciously 
circular analysis.  Thus, time is “analyzed” in terms of time.  For 
example, Whitrow (1980, p. 348) quotes Weyl (1949, p. 116) ‘the 
objective world simply is, it does not happen. Only to the gaze of 
my consciousness, crawling upward along the lifeline of my body, 
does a section of the world come to life as a fleeting image in space 
which continually changes in time.’

Weyl, as an eternalist, says the objective world does not happen; yet, 
to make sense of it all, surrenders to a temporal process of crawling 
along a world line as the generator of change.  In this regard, 
Weyl’s view is philosophically incoherent; and his explanation is 
not philosophically cogent.  The problem with the eternalist view, 
and Weyl in particular, is that by rejecting the reality of the flow 
of time it replaces a single flow of time with myriads of subjective 
time flows (“…fleeting image in space which continually changes 
in time.”) in individual consciousnesses crawling along world 
lines.  Hardly a convincing simplification. 

So then, under this influence of relativistic physics, time as an 
illusion was mistakenly embraced by many as a “scientific fact,” 
and the philosophy of “eternalism” was subsequently taken up 
by philosophers.  One of the first, and perhaps more frequently 
cited papers, is the paper by Hilary Putnam (1995).  Putnam’s 
essay outlines and restates the essentials of the arguments of the 
physicists.  However, Putnam’s arguments when carefully analyzed 
are unpersuasive.  He commits the usual erroneous interpretations of 
simultaneity to support the argument and endows the operationalist 
viewpoint with unwarranted metaphysical conclusions.  Appendix 
A deals with these arguments in detail.

Here we merely point out that the idea that the mathematics of 

relativity theory compels one to an eternalist view has been 
correctly denied by many.  Originally among these are Eddington 
and Reichenbach. More recent advocates of the reality of time and 
the flow of time are Ellis (2012) and Unger and Smolin (2015).
Whitrow (1980, p. 348) commenting on Weyl’s remarks above 
summarizes Eddington’s and Reichenbach’s criticism of the 
eternalist philosophy (cf. Figure 1 for the accompanying 
illustration):

Nevertheless, as has been stressed by Eddington (1935) 
and Reichenbach (1956 passim) the theory of relativity 
does not provide a complete account of time.  Despite 
what Weyl has said, the theory is not incompatible with 
the happening of events but is neutral in this respect. Any 
given instant E on the world line of an observer A (who 
need not be regarded as anything more than recording 
instrument), all the events from which A can have received 
signals lie within the backwards-directed light cone with 
its vertex at E. ...  there is an objective time order for 
all these events and the anomalies of time ordering that 
Weyl had in mind when he made the statement quoted 
above concern only events that lie outside this light cone. 
Signals from these events can only reach A after the event 
E and when they do reach A they will then lie within A’s 
backwards-directed light cone at that instant.  The passage 
of time corresponds to the continual advance of this light 
cone.  As far as the theory of relativity is concerned, we 
can consider either the set of all these light cones or the 
continual transition from one to another.  The theory 
is compatible with either point of view and does not 
invalidate the concept of temporal transition.

To recap, as Whitrow points out, the pseudo-Euclidean metric 
of relativity only imposes a causal structure on space-time, and 
the causal relations are determined by the null cones as shown in 
Figure 1.  The null cones represent the surfaces of fastest causal 
signals, and thereby separate space-time into regions which can 
causally influence each other.  Within the interior of the forward 
null cone are future events that can be influenced by event E; and 
within the interior of the backward null cone are the events that 
can influence E.   The remainder of space-time, consisting of all 
events outside the null cone at E (and called spacelike relative to 
E), can have no causal connection with E.  No observer at E can 
see the spacelike events.  In short, an unknown and operationally 
indeterminable “now” does not imply the nonexistence of “now.”
The arguments above answer the eternalist on the basis of their 
presuppositions -- showing their internal incoherence.  However, 
the strongest argument for the reality of time is from the 
presupposition of Christian theism. 
From a theological perspective, the unreality of time is incompatible 
with biblical revelation.   First, and most important, the reality of 
time is presented in the Bible in the opening verses of Genesis that 
describe the miraculous creation week and the occurrence of the 
first day.  
Further, both theologically and philosophically the unreality of 
time would: (1) imply that all men are co-eternal with God but 
merely unaware of the fact.  This is clearly a version of pantheism; 
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(2) entail the unreality of the creation week; (3) imply that the 
existence of sin, redemption, and judgement are likewise eternal.  
For instance, Christ is eternally on the cross. These are clearly 
rejected by the biblical revelation.

So then, fundamentally, presentism is the only biblically consistent 
position.  We cannot, on Christian presuppositions, maintain that 
the creation is, in anyway, coeternal with God and that all events 
in salvation history are eternally present.  As above, this would 
mean Christ is forever on the cross and other equally abhorrent 
implications. 

And finally, eternalism is philosophically incoherent.  It replaces 
the mystery of the reality of a single flow of time with billions of 
subjective flows of time.

To summarize, eternalism is untenable.  (1) It is contrary to 
Scripture. (2) Philosophically it is incoherent and, in fact, self-
refuting. (3) And finally, contrary to some opinion, it is not a 
consequence of the theory of relativity. 

1. A YEC cosmological solution
So then, to develop a solution of the starlight problem we turn 
to inhomogeneous models within GR interpreted according to a 
biblically consistent presentist philosophy of time.  GR is a widely 
successful theory of gravity and due to the relativity of time (“time 
dilation”) within the theory, GR is recognized as possessing the 
theoretical framework for solving the time issue.  Inhomogeneous 
models present the possibility of providing different time dilations 
in different regions of the universe.  However, relying on time 
dilation alone by way of inhomogeneities is not adequate to 
overcome the large orders of magnitude of the age-to-size ratio.  
Therefore, we will need to discover another path, in addition to 
mere inhomogeneity, to solve the light travel time problem.  As 
it turns out, the inhomogeneous solutions contain the seed of the 
solution since they contain “chronological enigmas” due to issues 
of the ambiguity of “simultaneity,” and the requirement of different 
lifetimes for different regions of the cosmos.

2. Foundations of the Solution
Our solution to the light travel time problem will be based on 
presentism and the fact that GR specifically and the relativity 

principle in general prohibits any empirical method of determining 
a putative hypersurface in space-time that is the present.  Thus, 
any spatial 3-surface that represents an actual “now” (which must 
exist according to presentism, though in principle operationally 
undetectable) and explains the distant light arrival is acceptable.  
As mentioned above, we will construct such a solution motivated 
by an examination of cosmological solutions with “chronological 
enigmas” that, when interpreted in the presentist view, imply that 
there must be “non-simultaneous” (according to a conventional 
requirement of “cosmic time”) yet when interpreted via presentism 
and a proper selection of a “now” surface accommodate a YEC 
cosmology.  The solutions we will examine are the maximal 
Schwarzschild geometry and the inhomogeneous L-T models.  
These cases correspond to time dependent spherically symmetric 
space-times.  We will discuss the Schwarzschild case first then 
turn to the construction of “crude” inhomogeneous models from 
the FLRW solution by way of an examination of the general L-T 
solutions.

To develop an inhomogeneous model cosmology that exhibits 
“chronological enigmas” we will employ the “cut and stitch” 
method of assembling solutions from pieces of several cosmological 
solutions.

3. The “Cut and Stitch” Approach to GR Solutions
We will begin the mathematical investigation of a YEC cosmology 
guided by the topological method of constructing solutions of the 
Einstein field equations (EFE) of General Relativity (GR). 

The object of study in GR is a pseudo-Riemannian manifold 
denoted by the ordered pair ( ),M g .  Here, M is a C∞ (“smooth”) 
4-dimensional Hausdorff manifold and g  is a Lorentzian metric 
tensor. We call the ordered pair ( ),M g

 
a space-time. See for 

example, Hawking and Ellis (1973, p. 56-59).  A key point made 
by Hawking and Ellis is that two models denoted by ( ),M g′ ′
and ( ),M g′′ ′′ are equivalent if there exists a diffeomorphism 

: M Mθ ′ ′′→  which carries (by way of the differential map, 
*θ   ) 

the metric g′  on M ′ into the metric g′′on M ′′ , i.e. *g gθ′′ ′= .  We 
say that two space-times are locally equivalent (in the regions

,N N′ ′′ ) if for some open subsets N M′ ′⊂  and N M′′ ′′⊂ the 
space-times ( ),

N
N g

′
′ ′ and ( ),

N
N g

′′
′′ ′′ are diffeomorphic.  Here 

N
g denotes the restriction of g to the set N . It follows that any 
two locally diffeomorphic space-time manifolds will be physically 
equivalent in their mutual regions of overlap.  We will later use 
this property to note that our proposed solution, in as much as it 
matches the FLRW metric, will retrodict all the properties of the 
FLRW within the common region.  An illustration of this can be 
seen by considering a 2-dimensional example.  Consider the unit 
two-sphere 2S embedded in 3-dimensional Euclidean space, 3R , 
with induced metric:

2 2 2 2sinds d dθ θ ϕ= + .

For a second manifold consider the “polar cap” specified by the 
open set given by

( ){ }0, ,0 2P θ ϕ θ θ ϕ π= < ≤ < .

This is a submanifold of 2S and is isomorphic to the same region 
of 2S consequently the polar cap region has all the same local 
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geometric properties (for example, curvature, geodesics between 
points, length of geodesic within the polar region, etc.).  This is also 
the case for the full 4-dimensional case of space-time solutions, the 
only difference being dimensionality and signature of the metric.   

The topological method uses the local (tensorial) feature of solutions 
of the EFE that imply that if ( ),M g is a solution then “cutting” 
and removing any closed subset X from M is also a solution on 
the manifold ( ),A AM g  with AM M X= − and 

AA Mg g= .  Also, 
if ( ),A AM g and ( ),B BM g are two “cut out” solutions of the EFE 
in disjoint regions then the “stitching” together of ( ),B BM g and 
( ),B BM g , with continuous boundary conditions is also a solution.  
We will use this method to show conceptually how an approximate 
“crude” model with a young earth neighborhood and an older remote 
universe can be constructed. To construct this model, we will join 
two regions consisting of different homogeneous densities. Each of 
these regions is thus a subset of the FLRW cosmology.  The two 
regions will be connected by a vacuum region (“Einstein Rosen 
bridge”) or a “void” consisting of a subset of the Schwarzschild 
solution. This model is an example of a spherically symmetric 
inhomogeneous space-time.  We will return to the FLRW space-
time below.  First, we look at the “chronology enigma” of the 
vacuum Schwarzschild space-time.

4. The Schwarzschild Chronology Enigma
The best known spherically symmetric inhomogeneous solution is 
the vacuum Schwarzschild metric.  Figure 2 shows the maximally 
extended solution in Kruskal-Szekeres (KS) coordinates (cf. 
Misner et al., pp. 827-35).   (In the figure the coordinates X, T 
correspond to u, v in Misner et al.).  Plotted in the figure are the 
contours of the Schwarzschild coordinates (r,t) in relation to the KS 
coordinates (X,T).

This solution is sometimes referred to as the “eternal” black hole 
solution.  It is actually a “white hole” at r=0 in the past and a “black 
hole” at r=0 in the future.  It should be noted that the surfaces 
r=0 are spacelike; so, they are not a place but a time. They do 
not correspond to the world-line(s) of any physical particle(s) with 
mass.  In this sense, the maximal vacuum Schwarzschild solution 
is completely devoid of mass, and is an example of pure curvature 
producing gravitational effects without matter. 

The entire manifold consists of four regions labeled in the figure 
I, II, III, IV.   These four regions can be characterized as T and 
R regions according to the criterion whether the gradient of the 
coordinate of r is timelike (T-region) or spacelike (R-region), cf. 
Novikov (2001), Frolov and Novikov (1998, pp. 24-5).

A region is said to a T-region if the gradient of r is timelike:
0r rµµ∂ ∂ < ,

i.e. the normal to the r=constant surface is timelike.  In the 
R-regions the gradient of r is spacelike: 

0r rµµ∂ ∂ > ,

i.e. the normal to the r=constant surface is spacelike.  

The regions II and IV are T-regions since the gradient of r is 
timelike there, and thus r is not a time coordinate there.  Regions 
I and III are R-regions and there, r is a spatial coordinate.  {As an 
aside, a failure to recognize T and R regions has historically been 
the source of many misinterpretations of GR solutions.}

The holes are said to be “eternal” since any observer who maintains 
a constant radial distance greater than r=2M (a world line solely 
in the R-region I, for example) have world lines that extend 
from proper time τ = −∞  to τ = ∞ .  Such a world line would 
represent an observer who did not emerge from the past singularity 
and does not cross the future event horizon (and subsequently 
falling into the future singularity).  On the other hand, any observer 
freely falling from r=0 in region IV to r=0 in region II has a finite 
temporal history.  Such a world line would represent an observer 
who emerged from the past singularity (“white hole”) and crosses 
the future event horizon falling into the future singularity.   This 
is the source of the temporal enigma.  For, if time is real, then the 
white and black hole must be of finite temporal duration, yet the 
external region I is of infinite temporal duration.  This presents 
the enigmatic question: “When, relative to the time in the external 
R-region I did the singularities occur?”  The time interval between 
a point on the “white hole” boundary to any point on the “black 
hole” boundary occurs in finite time.  As such those temporally 
finite world-lines must ultimately be finished relative to the infinite 
temporal region I. 

This temporal enigma is akin to the Kantian antinomy (Kant, 
1787, A426/B454) that there cannot be an actual infinite past.  The 
argument, in a nut shell, is that the future is a potential infinity 
which can never be exhausted, yet this KS solution requires not 
a potential past infinity, but an actualized temporal past infinity 
consisting of events that have occurred.  Time symmetry then 
implies a contradiction.  For Christian theism, we reject out of 
hand an actualized infinite past since this would entail a “creation” 
co-eternal with God.  Thus, this idealized empty “eternalist” 
Schwarzschild solution is rejected as theologically and physically 
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Figure 2. The maximal extension of the Schwarzschild space-time in 
Kruskal-Szekeres coordinates (X,T).  The Schwarzschild curves of constant 
r are displayed with the broken lines.  The r=0 singularities are shown.  
For T<0 the singularity is a white hole; while for T>0 the singularity is 
a black hole. The orthogonal solid lines are constant Schwarzschild time 
coordinates (t).



unacceptable.  Rather a solution based on Christian presuppositions 
requires us to take an initial surface occurring at a finite time in the 
past. For example, we should take the solution manifold to be the 
set characterized by:

{ }0( , , , ) :M T X T Tθ ϕ= >

for some finite value 0T  (in general a function of , ,X θ ϕ ) specifying 
the time of creation.

This is one example of excising an open subset of a solution of 
EFE.  Such an initial condition being an open subset of the KS 
solution is mathematically consistent with GR. 

As it turns out GR provides no single answer to the question of 
simultaneity and when “in time” the singularities “occur.”   In fact, 
GR allows the singularities to “occur” at any causally consistent 
spacelike surface. This can be illustrated for the case of an external 
world line that remains forever within the R-region labeled I.  
Referring to Figure 3, cf., for example, Misner et al. (1973, p.528), 
we display several spacelike surfaces through the Schwarzschild 
space-time.  Any of these could be a surface of simultaneity.   The 
surfaces are temporally ordered:  AA’ is earlier than BB’ etc.   Each 
of these surfaces could be taken as an actual surface representing 
the present “now.” And, according to presentism and Christian 
theism, one such spatial hypersurface must be selected as “now” 
and, also, there must be an initial hypersurface corresponding to 
the first moment of creation, since the extension of region I to 
t = −∞ is inconsistent with Christian theism.  As time progresses 
from each successive “now” (A to B to C to D) the proper time 
on each world line intersecting those surfaces does, of course, 
progress at different rates, according to the proper time integral.  
For example, the time registered between space-time events “ A ” 
and “ B ” by any clock (inertial or not) along a world line ( )aγ λ  is 
given by the integral:

( ) ( )B

A

d d
g d

d d

α β

αβ

γ λ γ λ
τ λ

λ λ
= ∫

        				    (2)

Thus, we emphasize, presentism does not deny that local clocks 
(in particular, non-inertial ones) tick at different rates. Presentism 
preserves all the differential structure of SR and GR and thus is 
mathematically consistent with SR and GR.  

5. L-T Chronological Enigmas
Before analyzing chronology enigmas in general, we now examine 
the general class of time dependent spherically symmetric solutions 
of the EFE.  These are referred to as the Lemaître-Tolman (L-T) 
solutions. These solutions provide the foundation for the analysis 
of the chronological enigmas.  Also, the FLRW cosmologies are a 
special case of the L-T solutions and can thus be analyzed in terms 
of the parameters of the L-T class.

6. A Survey of Spherically Symmetric Inhomogeneous models 
(L-T Models)
The general solution for the EFE for an inhomogeneous spherically 
symmetric space time was developed in detail many years ago 
(Tolman 1934; Bondi 1947). Frolov and Novikov (1998) give a 
succinct summary of the process of solving those equations which 
we follow here with minor changes in notation.  Plebański and 
Krasiński (2006) is also a highly recommended reference with 

detailed analyses of inhomogeneous cosmological solutions.  

The L-T models are based on the time evolution of a spherically 
symmetric (but otherwise inhomogeneous) dust cloud (no pressure) 
in comoving coordinates.  These are solutions that result from a 
stress energy tensor that depends only on the mass density and is a 
function of t  and r only:

( , )T t r u uµν µ νρ=

uµ  is the four-velocity vector field of the dust.

It can be shown that the metric interval for the general case of 
an inhomogeneous spherically symmetric space-time in comoving 
coordinates of freely falling particles is given by the form:

( )2 2 2 2 2, ( , )rrds dt g t r dr R t r d= − + + Ω                                          (3)

The coefficient of 2dt  is 1−  since all clocks are radially free-falling 
at constant comoving coordinate r and thus register the “cosmic” 
time 2 2dt ds= − .  Note that ( ),R t r is no longer a radial coordinate 
but a function of the comoving coordinate r and the proper time 
t.  However, the area of a sphere at time t and radius r is still 

24 ( , )R t rπ .

The EFE with cosmological constant 0Λ = and a pressureless 
“dust” then reduce to the following set of independent equations:

21 ( ) ( )
2

M rR E r
R

− =

                                                                     (4)

( ) ( )
( )

2

,
1 2rr

R
g t r

E r
′

=
+                                                                      (5)

( )
24 ( , )

M r
t r

R R
πρ

′
=

′                                                                         (6)

In these equations: ( )M r is gravitational mass within a radius r 
from the center of symmetry.  It is not to be confused with the total 
invariant rest mass that appears in stress-energy tensor by way of 
the invariant density ρ . ( )M r measures the rest mass energy plus 
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Figure 3. Spacelike hypersurfaces within the maximal extension of the 
Schwarzschild geometry.



(a negative) gravitational binding energy. For example, for closed 
solutions the total gravitational mass can be zero even though
ρ (which is always non-negative) is not. ( )E r is the energy and 
curvature at a given comoving radius r.  ( )E r is required to satisfy 
the inequality ( ) 1/ 2E r > − . For ( ) 0E r < we have a closed universe 
with positive curvature which expands from an initial “big bang” 
to a maximum radius then collapses to a final “big crunch.”  For 

( ) 0E r = the universe is open and flat (zero curvature), while for
( ) 0E r > the universe is open and hyperbolic (negative curvature).

An important and interesting feature of these equations is that for 
fixed r  the matter in that “shell” evolves independently from the 
rest of the matter in the universe that is at a radius > r.   This is the 
same as the Newtonian effect that the matter outside a spherical 
shell does not affect the motion of matter interior to the shell.  Each 
shell of constant r is in fact the equation of a geodesic.  Further, 
each shell can be given its own initial conditions specified by 
the arbitrary functions M(r) and E(r) and the shell will evolve 
according to the standard Friedman cosmological model. This 
observation will play an important part in the YEC solution and 
its interpretation later. [It should be noted that the functions must 
satisfy some rather general conditions to avoid surface layers and 
shell crossings.  The details of these conditions are not essential 
to the overall discussion here. The interested reader is referred to 
the papers by Hellaby and Lake (1985) or Hellaby (1987) for the 
details.]
The last equation can be integrated to obtain ( )M r

( ) ( ) 3

0

4 0, (0, )
3

r dM r dr r R r
dr

π ρ  =  ∫ 	                                          (7)

( )M r gives the amount of gravitating mass at radius less than r.

In the following we restrict our attention to closed solutions with 
1/ 2 ( ) 0E r− < < .  For this case, a general solution to equations 

(4) - (6) can be found by introducing the cycloidal parameter 
π η π− ≤ ≤  .  This choice forη corresponds to maximum expansion 

at 0η = .

( )
( )

( )3/2
( ) sin

2 ( )B
M rt t r
E r

η η− = +
−                                                  (8)

( ) ( ) ( )
2( ) ( )( , ) 1 cos cos

2 ( ) ( ) 2
M r M rR t r

E r E r
ηη= + =

− − 		  (9)
( )Bt r  is a constant of integration and an arbitrary function of r .  

In the literature, it is referred to as the local “time to the Big Bang.”  

Note that this solution is the general inhomogeneous solution for 
a pressureless dust universe. Another useful representation for this 
solution can be obtained to express ( ),R t r implicitly in terms of t 
and r is obtained by solving forη in the equation for ( ),R t r

1 ( ) ( , )cos
2 ( )

E r R t r
M r

η −  −
=  

 
Substituting this into the equation for t then gives the implicit 
equation for R as a function of t and r:

( )
( )

2 1
3/2

1 2 ( ) ( )2 ( ) 2 ( ) cos
2 ( ) ( )2 ( )B

M r E r Rt t r M r R E r R
E r M rE r

−  −
− = + +  

−  

                                                                                                  (10)

The “big bang” surface is given by 0R =  when η π= −  . When we 
set η π= − in equation (8) we get for the past singularity:

( )
( )3/2

( )
2 ( )B

M rt t r
E r

π
− = −

−
.

Since we choose (arbitrarily) t=0 as the time of the big bang we 
obtain:

( )
( )3/2

( )
2 ( )B

M rt r
E r

π
=

−

Thus, explaining the term “time to the big bang.”

A special case of the general spherically symmetric solution is 
the homogeneous FLRW solution. We now briefly discuss the 
homogeneous FLRW solution since it will play a central role in the 
conceptual development.

7. The homogeneous models. The FLRW cosmology
The FLRW space-time is described by the metric:

( ) ( )( )2 2 2 2 2
Kds dt a t d f dχ χ= − + + Ω                                       (11)

( )

2

2

2

sin 1
0

sinh 1
K

K
f K

K

χ
χ χ

χ

 = +
= =
 = −

The value of K determines whether the geometry is closed or open.  
K=+1 is the closed solution, K=0 is the open conformally flat 
solution, and K=-1 is an open hyperbolic space-time.

The FLRW space-time is the solution for a pressureless and 
homogeneous “dust” cloud. Recall that this solution uses 
“comoving” coordinates. The particles are all free falling (only 
gravity is present), and for any “particle” in the space-time 
the coordinates θ  and ϕ  are constant. We will be using these 
“comoving” coordinates exclusively in our analysis.  In these 
coordinate systems t  is the proper time registered by the freely 
falling clocks.

The scale factor ( )a t  
can be written in terms of a parametric 

equation using the cycloidal variable η .

( ) ( )

( ) ( )

0

0

1 cos
2

sin
2

a
a

a
t

η η

η η η

= +

= +
                                                                   (12)

We have chosen the parameter η   to be in the interval[ ],π π− . Here 
a0 is the radius of the universe at maximum expansion corresponding 
to 0η = . The universe expands from the singularity a=0 at η π= −
to the maximum at 0η = .  It then collapses to the singularity a=0 at
η π= .  Note that with these choices all particles are synchronized 
so that they register proper time 0t =  at maximum expansion.

The radius of maximum expansion and the lifetime of the solution 
is determined by the matter density ( )tρ  in the universe.   At 
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maximum expansion, the density is ( )0ρ and the maximum radius 
is given by:

( )0
3

8 0
a

πρ
=

				                               (13)

The lifetime of the universe is then evaluated as:
( ) ( )

( )0
3

8 0

T t t

a

π π

ππ
ρ

= − −

= =
			                              (14)

8. Relation of the homogeneous FLRW solution to the L-T 
solutions
A special case of the spherically symmetric solutions is the FLRW 
homogeneous cosmologies which we described above.  Here we 
show the relation of the FLRW solution to the functions M and E 
of the general L-T solution.

For the FLRW cosmology the matter density is uniform and 
independent of space, and therefore a function of the comoving 
time only.  

For reference the parameterization of the metric for the FLRW 
solution is

( ) ( )( )2 2 2 2 2
Kds dt a t d f dχ χ= − + + Ω 	                           (15)

The general L-T solution as discussed in the section above is given 
by:

2

2 2 2 2

1 2

R
ds dt dr R d

E

 ′
 = − + + Ω
+ 	                                          (16)

Comparison with the FLRW metric then yields:

2

2

2 2

( )
1 2

( ) ( )k

R
a t

E
R a t f χ

 ′
  =
+
=

Therefore

1/2

2

1 ( ) ( ) ( )
2

12 ( ) 1
4

k k

k
k

R a t f f

E f
f

χ χ

χ

−′ ′=

 ′= −
 

Specializing to the closed solution we have:

2 2

( ) cos
2 ( ) cos 1 sin
R a t

E
χ

χ χ χ

′ =

= − = −

With the specialization of the density to a function of time, the 
functions E and M become (now using χ  as the radial coordinate):

( ) ( )

( )

( )

( )

3

0

3

0

3

3 3

4 0 (0, )
3

4 0 (0, )
3

4 0 (0, )
3

4 0 (0)sin
3

dM d R
d

dd R
d

R

a

χ

χ

πχ χρ χ
χ

π ρ χ χ
χ

π ρ χ

π ρ χ

 =  

 =  

=

=

∫

∫

Using the relation given in equation (13) yields:

( ) 31 (0)sin
2

M aχ χ=

We will use these relations to produce a globally inhomogeneous 
solution (but with piecewise locally homogeneous regions) which 
will exhibit the features for a YEC cosmology.

9. A Semi-closed inhomogeneous model
A few years ago, I attended a presentation in which the speaker 
presented an inhomogeneous cosmology consisting of two 
separate regions which are subsets of the FLRW with different total 
mass. The solution consists of a closed universe consisting of two 
spherical homogeneous FLRW regions of different uniform density 
connected by a cylindrical Schwarzschild section with no matter.  
I will refer to this class of solutions as the “bar bell” cosmologies.  
Bonnor (1956) also has considered such closed solutions in his 
investigations of nebulae formation.

If we qualitatively diagram the time dependence of a radial cross 
section of the space-time we arrive at the notional Figure 4, which 
depicts the idea of such an inhomogeneous space-time.  The left 
side and right side of the figure depicts regions of homogeneous 
density.  The density of the left side is greater than the density 
of the region on the right side; hence, the lifetime of the region 
on the left is less than that of the region on the right by virtue 
of equation (14).  The middle section is a spherically symmetric 
vacuum (zero matter density) and thus by Birkhoff’s theorem must 
be a section (subset) of the maximal Schwarzschild solution.  In 
that figure, it is evident that one can slide the smaller region’s time 
of existence upward or downward.  When one slides the smaller 
region on the left forward in time we have a cosmology in which 
the proper “time to the creation” is less than the proper “time to 
creation” of the larger region.  In other words, the EFE do not 
specify when solutions occur globally.  We will need to proceed 
from this qualitative notional solution by solving the EFE.

Relying on the relativity principle, there is no preferred, i.e. 
detectable, spacelike surface of “now.”  If T(x0, x1,x2,x3) is a 
scalar function on the space-time such that Tµ∂  is a timelike (i.e. 

0g T Tµν
µ ν∂ ∂ < ) covariant field then T=constant is a physically 

allowable “now.”

This “bar bell” cosmology is an example of a solution obtained by 
stitching several solutions at the seams.  We should note that the 
“stitching” method requires that the solutions join smoothly along 
the seams.  This condition sometimes rules out many simplistic 
constructions. [Note: Exact solutions can be obtained provided the 
stitching condition at the junction hypersurface ( ) 0f x =  satisfies 
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the Lichnerowicz junction conditions (Synge 1971, p.39ff):
, ,G f G fβ β

α β α β+ −
=

The subscripts + and −  indicating evaluation to the “right” and 
“left” of the two regions to be joined.  The differential of f is the 
normal to the hypersurface ( ) 0f x = .]

As mentioned above, an example of straightforward cutting and 
stitching of solutions is the collapse of an interior homogeneous 
dust cloud (which is diffeomorphic to a subset of the FLRW 
cosmology) joined to an exterior vacuum Schwarzschild metric 
(which is diffeomorphic to a subset of the Kruskal-Szekeres 
maximal extension of the Schwarzschild solution).  See Misner et. 
al. (1973, pp. 851-3) for the joining in Schwarzschild coordinates.  
See Novikov (1963), Frolov and Novikov (1998) for the joining 
in Novikov coordinates which we follow here.  The mathematical 
details of matching the solutions is given in Appendix B.  The 
matching consists of specifying 0C  (continuous) functions ( )M r  
and ( )E r  in equations (4) - (6) above.  The results are illustrated in 
Figure 5 and Figure 6.

Figure 5 depicts an embedding diagram of a spatial section of this 
“bar bell” cosmology at the time of maximum expansion.  [Note: 
the diagram is not a depiction of a potential well. Instead it displays 
a two-dimensional surface that is the / 2θ π=  section of the spatial 
S3 manifold. Each circumference in the diagram is a slice of the 
two-dimensional sphere, S2.]  Note the cosmology is closed.   It has 
both a “north” and a “south” pole at the top and bottom of the figure. 
The spherical sections at the poles are locally homogeneous FLRW 
regions.  The waist in the middle is a section of the Schwarzschild 
vacuum solution; it is a “void” in the cosmology in which the 
invariant mass density is zero.  This model cosmology exhibits the 
possible features of general closed inhomogeneous cosmologies.

In Figure 6 we have displayed the temporal evolution of the bar 
bell cosmology showing the “non-simultaneous big bangs.”  The 
“big bang” in the denser “south pole” region occurred later than 
the “big bang” in the “north pole” region.  Also, regions of the 
Schwarzschild waist come into existence at different times. This 
solution can be interpreted as two exploding white holes, expanding 
to a maximum expansion and then collapsing into a black hole. 
With the cycloidal parametrization above, both FLRW regions 
have synchronized clocks reading t=0 at maximum expansion. 
The chronology enigma that presents itself is that the “initial” 
time of each white hole explosion is not necessarily the same (i.e. 
“simultaneous”).  A similar consideration applies to the time of the 
final collapse to the black hole.  Further the total life time of each 
region is different as the lifetimes of each region are proportional 
to the mass and inversely proportional to the total energy within 
each region.  As a result, at least one of the events, big bang or 
big crunch, must be non-simultaneous. The point to be emphasized 
is that it is not required by GR that any of the singularities be 
“simultaneous.” 

10. A YEC Cosmology Hiding in Plain Sight
If we look at the general solution to the inhomogeneous cosmology, 
given in equation (8).  above, we notice a rather remarkable feature 
of the general solution.  That feature is the presence of the arbitrary 
function of integration, ( )Bt r  called there as the “time to the Big 
Bang.”  It is this function that allows us to shift the regions in 
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Figure 4.  Conceptual diagram of two FLRW regions connected via 
a vacuum neck.  The “Big Bangs” and the “Big Crunches” are non-
simultaneous.  Nothing in GR requires that these two regions are necessarily 
synchronized.  Each region can be shifted vertically in time to construct 
cosmologies with different creation times in the two regions.  This model 
will be analyzed and constructed with exact mathematical solutions of the 
EFE along with continuous joining conditions in later sections.

Figure 5. Embedding diagram of the inhomogeneous “bar bell” cosmology.  
The solution consists of two semi-closed homogeneous FLRW regions 
which are subsets of the full FLRW cosmological model and a vacuum 
Schwarzschild region.  The FLRW region at the “north pole” (top of the 
figure) has a smaller matter density at maximal expansion than the FLRW 
region at the “south pole.”  The two FLRW regions are connected by an 
equatorial waist in which the density is zero.  The waist is an “Einstein-
Rosen” bridge and is a subset of the Schwarzschild solution.  This diagram 
is an example of stitching together three solutions of the EFE.  The surface 
of the “bar bell” reflects the geometry of the 2-dimensional cross section 
of the full space-time at a fixed time and / 2θ π= .  The coordinates in 
the figure are ( ),r ϕ  ( r is measured vertically, and ϕ  is axial angle). 
The independent parameters for this diagram are 1 3 / 4α π=  

and the 
maximum radii of the FLRW regions are 1 2(0) (0) / 2a a= .



Figure 4 as mentioned above.

The naturalistic interpretation of the solutions is to extrapolate all 
the way to 0R = . As creationists we do not necessarily extrapolate 
back to 0R = .

Since the function ( )Bt r is arbitrary the creationist reply is to 
choose the freedom in the function ( )Bt r in a way that it aligns some 
spacelike hypersurface to correspond with the creation moment.  
Specifically, we can specify the creation surface via a function 

( )Ct t r= . This function depends upon the radial coordinate so that 
a consistent solution can be achieved by taking a function such that

(0)Ct t− is only thousands of years, while as the radial coordinate r 
increases, the time (relative to the comoving “synchronized” time) 
to the creation surface also increases, reaching values consistent 
with observational astronomy.  In a certain sense this means the 
earth is young and the distant universe is “old” (relative to the 
comoving earth clocks).  But, as will be discussed later, this does 
not mean the distant universe has necessarily aged billions of years.
As an example of specifying the function ( )Bt r we can choose the 
function so that 0R = of the “Big Bang” in the “bar bell” cosmology 
all occur at t=0.  When we do this, we obtain the cosmology shown 
in Figure 7.

This feature of “non-simultaneous” Big Bangs in the 
inhomogeneous models has been noted in the literature.  Enqvist 
(2008), in an analysis of accelerated expansion of the universe, 
states that, “The universe could have an inhomogeneous big bang, 
where the universe came into being at different times at different 
points, and/or an inhomogeneous matter density.” (Emphasis 
added.)  This idea is consistent with the YEC model proposed here.  
We should note that the Enqvist quote does not preclude, due to the 
relativity of time, the simultaneity of creation though occurring at 
conceivably different comoving time coordinates.  All our theory 
requires is that the miraculous period of creation occur within 
a literal week everywhere in the cosmos.  Since simultaneity is 
strictly not determined by time coordinates, we are free to choose 
any consistent spacelike hypersurface as the simultaneous “now” 
for the days of the creation week.

To that task we now turn.

11. A non-simultaneous Big Bang solution
Motivated by the results of the prior section, let us consider a 
cosmology with a smooth “creation surface” and smooth initial 
density.  As a model case, we consider the homogeneous FLRW 
cosmology.  The FLRW is given by the metric in equation (11) 
above.

 ( ) ( )( )2 2 2 2 2
Kds dt a t d f dχ χ= − + + Ω

As shown in the prior sections GR and the principle of relativity in 
general allows any spacelike surface to be an acceptable surface for 
a present “now,” and the same applies to the moment of creation. 
We can exploit the freedom of specifying initial surfaces to select 
a spacelike surface that would be “old” at remote locations and 
young near the earth.  We are going to cut the “Gordian Knot” 
of the distant starlight by choosing a spacelike surface that has 
an “old” universe (in a sense that will become clear) for spatially 
remote locations, and a young earth.  Rejecting the uniformitarian 
assumption of extrapolating cosmological data to a past creation 
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Figure 6.  Temporal development of the inhomogeneous “bar bell” 
cosmology showing the “non-simultaneous big bangs.”  Proper time is 
vertical. The “south” pole (r=0) is at the left and the “north” pole at the 
right.  Contours of the “radius” R of the universe are shown in all three 
regions.  The contour interval is / 2gr M= .  The coordinate system is 
comoving with clocks synchronized to zero at maximum expansion in the 
horizontal center line of the graph.  Comoving time-like geodesics are 
specified by a constant value of r, and are thus vertical lines in the figure.   
For this choice we see that the “big bang” in the denser “south pole” region 
occurred later than the “big bang” in the “north pole” region.  Also, regions 
of the Schwarzschild waist come into existence at different times. The 
vertical dashed lines mark the boundaries between the FLRW regions and 
the Schwarzschild waist in the middle of the graph. The lines R=0 are the 
boundaries of the space-time.  R=0 at the bottom of the figure is the “big 
bang” and R=0 at the top of the figure is the “big crunch.”  Though not 
labeled in the graph, R=0 at the south pole and the north pole.

Figure 7. Similar to Figure 6, the temporal development of the 
inhomogeneous “bar bell” cosmology where the “time to the big bang” 

0 ( )t r  has been set so that there are “simultaneous big bangs” at time 0t =  , 
i.e. all clocks are synchronized at the single “big bang.”  Note that as the 
new “cosmic time” t advances that the FLRW at the south pole encounters 
the big crunch before portions of the Schwarzschild waist and the FLRW 
region at the north pole.  The Schwarzschild waist at 0r  encounters the 
crunch first.  At that time the two FLRW regions become disconnected.  
All other explanations in Figure 6 apply also.  



billions of years ago everywhere to a putative initial singularity, 
we consider extrapolating only thousands of years near the earth 
and billions of years at remote locations.  When we do this, we 
arrive at the conceptual diagram in Figure 8. This concept produces 
a surface that bends into the “remote past” (with reference to the 
usual “cosmic time” of the Big Bang cosmology). Note that if we 
have the surface approach the past null cone asymptotically, we 
produce a cosmology in which the light rays will progress toward 
the earth rapidly as the hyperbolic surface advances in time. We 
further note that specifying such a surface also produces a spacelike 
surface with intrinsic curvature differing from the usual FLRW 
curvature, and a non-uniform matter density (since the density is 
higher at the remote regions).  
In order to select a hypersurface that is asymptotically null, we 
transform the metric to the conformal form based on the cycloidal 
variableη via equation (12) above:

( )dt a dη η=  
Performing the change of time coordinate to the cycloidal parameter 
yields.

( ) ( )2 2 2 2 2
Kds a d d f dη η χ χ = − + + Ω 

We take the origin, 0χ = , to be in the general vicinity of the earth.
Performing the change of time coordinate to the cycloidal parameter 
yields.

( ) ( )2 2 2 2 2
Kds a d d f dη η χ χ = − + + Ω 

We note that the past radial ( 0θ ϕ= =  ) null geodesics are given by 
the equation:

2 2 0d dη χ− + =

The solution for an incoming null ray is then:
( )χ η τ= − −

In whichτ is the (conformal) time at which the incoming past null 
ray arrives at 0.χ =  
We next consider a spacelike hypersurface that is asymptotic to the 
past null cone.  It is given by the equation:

2 2bη τ χ= − + 					                  (17)
We consider this to be the creation surface for some value ofτ to 
be specified.   With this choice we are necessarily taking a subset 
of the usual FLRW, since we are discarding regions of the FLRW 
manifold for which 2 2bη τ χ≤ − + (cf. Figure 9).  Viewed as a 
cross section of the FLRW cosmology the portion of the FLRW 
below the surface labeled “Day 1” did not exist.  The constantb is 
a free parameter of the model. As b  approaches zero the spacelike 
hypersurface approaches the limiting null cone, given by:
η τ χ= − .
Thus, a value of zero would mean the distant light would reach 
earth instantaneously. For non-zero values b is the time it takes 
light from objects at infinity to reach the earth. 
We now define a new time coordinate by way of the scalar function:

2 2( , ) bτ η χ η χ= + +

Note that this specification of the function τ  already utilizes a 
“time to creation” that is a function of χ . 
To simplify the analysis, we next introduce a new coordinate ρ via:

sinhbχ ρ= .
Then

coshbτ η ρ= +

Taking the differentials gives:
sinhd d b dη τ ρ ρ= − ,

and substituting into the metric we then obtain the following for 
the metric:

( ) ( )2 2 2 2 2 2cosh 2 sinh sinhKds a b d b d d b d f b dτ ρ τ ρ τ ρ ρ ρ = − − + + + Ω 
                      					                  (18)
We rewrite the above equation in the following form, for use later, 
in the 3+1 formalism:

( ) ( )
2

2 2 2 2 2 2 2sinhcosh sinh sinhKds a b d b d d d f b d
b
ρτ ρ τ ρ τ ρ τ ρ

  = − − + + − + Ω  
   

  						                   (19)

( )
2

2 2 2 2 2 2sinhcosh sinhKds a d b d d f b d
b
ρρ τ ρ τ ρ

  = − + + + Ω  
   

		
	   					                  (20)

Note that the actual elapsed proper time registered by the comoving 
clock at ρ is computed from the conformal timeτ by the integral:

( , )t a dτ ρ τ= ∫
The only difference in the manifold of our cosmology and that of 
the standard FLRW cosmology is that the initial surface, taken to 
be the initial creation surface, is a “non-simultaneous” Big Bang 
relative to the usual FLRW “cosmological time” but viewed as 
simultaneous within the hyperbolic surface. If from that moment 
time advances uniformly then the asymptotically null spacelike 
surfaces maintain their hyperbolic property.  However, there is 
nothing to preclude God from advancing the remote regions more 
rapidly thereby yielding a non-null hyper-surface.  That concept 
is consistent with the biblical account.  Figure 9 illustrates this 
concept.  
Relativistic principles do not distinguish any preferred initial 
geometry or any preferred cosmological simultaneity surface.  
Hence, the hyperbolic surface though not “simultaneous” with 
the 0τ =  surface of the FLRW cosmology is no less physically 
plausible.   The illusion is only due to viewing the YEC as 
embedded in the maximally extended FLRW manifold.  

We can plot the paths of radial light rays using the conformal 
metric in  above.  Light rays are determined by setting 2 0ds = .  
This gives: 

Or,
sinhcosh d b d d

b
ρρ τ ρ τ = ± + 

 
Solving this differential equation yields, the following for incoming 
and outgoing null rays:

( )
( )

0

0
0

e e    for outgoing light rays

e e  for incoming light rays

b

b

ρρ

ρρ
τ τ

−−

 −− = 
−

		              
						                   (21)
Figure 10 shows the light rays for our YEC cosmology.   We note 
that in Figure 10 the space-time is displayed with the 0τ =  creation 
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surface as a horizontal line rather than as a hyperboloid embedded 
in the FLRW manifold. That instantaneous surface is, of course, 
a curved manifold.  As discussed above GR places no temporal 
constraints on whether any spacelike surfaces are excluded.  In 
fact, relativity forbids that man can operationally determine what 
is the current “now” surface.   This is the case because we can only 
observe the universe along the past null cone.

We can use equation (21) to compute the particle horizon which 
gives the observable universe at a given time.  For an incoming 
light ray emitted from 

0ρ  at the creation time
0 0τ =  and arriving at 

the earth ( 0ρ = ) at time τ  the solution for the horizon
0ρ  is:

0 log 1
b
τρ  = − − 

 

This shows that the entire universe is observable after the passage 
of time b.

In particular, we note that in this model the light from distant objects 
arrives at the young earth. Further that all observable physics will be 
in line with the equations of GR and the implications of the FLRW 
metric (or any modifications of that solution for inhomogeneities) 
since the solution is in fact a section of the FLRW manifold.  
All tensorial equations and invariant quantities are the same.  In 

particular, the predictions of red-shifts are identical to those of the 
FLRW cosmology.

12. Postscript. Future Avenues of Research. The 3+1 Formalism.
I had initially intended to analyze the entire class of YEC cosmologies 
by utilizing the 3+1 formulation of EFE.  Unfortunately, due to 
time constraints, I have not been able to pursue that approach to the 
depth and rigor required for publication, at this time.  I propose that 
possible future research in YEC cosmologies might benefit from 
using the 3+1 formulation of the EFE in which a spacelike initial 
surface (3-metric ijγ  

and metric 3-momentum ijπ ) is integrated 
forward in time by way of a Hamiltonian approach.  The 3+1 
formulation directly corresponds to the presentist philosophy of 
time, and the initial data, namely.

To analyze the time development of solutions to EFE, the 3+1 
formalism decomposes space-time into a foliation of spatial 
hypersurfaces indexed by time t. Each hypersurface tΣ can thus be 
interpreted as a surface of “now;” with the time coordinate t denoting 
the actual cosmic time.  In this way the 3+1 formalism conceptually 
reflects the presentist view of time.  The 3-dimensional metric ijγ
and its momentum ijπ  can be specified on an initial creation spatial 
hypersurface and its temporal development examined.   Details of 
the 3+1 formalism can be found in detail in Gourgoulhon (2012). 
The metric is written in terms of the intrinsic metric ijγ of the 

Dennis  ◀ Young earth relativistic cosmology ▶ 2018 ICC

26

Time

Large Look
back time

Earth

Space

Small Look
back time

Initial space-like
creation surface

Light ray from
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Figure 8. A solution to the light travel time problem based on a hyperbolic initial creation surface given by a function ( )Ct t r=  in terms of the FLRW 
cosmic time coordinate.  Due to the curvature of the surface the look-back time at the earth increases with distance.  The creation surface occurs 
simultaneously at the beginning of day one, even though the “look-back time” (relative to the FLRW extrapolated “cosmic time”) for distant events is 
very large.  The look-back time will be a smooth function of distance in the detailed model.



three-dimensional hypersurface tΣ along with the lapse and shift 
functions, N and jβ :

( )( )2 2 2 i i j j
ijds N dt dx dt dx dtγ β β= − + + +  	                            (22)

	
		
When equation (22) is compared with equation (20) above one 
obtains, the following:
Lapse function N:

( )
( )

( , ) cosh cosh

cosh

N a b

a

τ ρ τ ρ ρ

η ρ

= −

=

Shift vector β : 

sinh ,0,0j

b
ρβ  =  

 

Metric of 
tΣ :

 
γ= b2a2(η)dρ⊗dρ+a2(η)fK(b sinh ρ)dΩ2

The EFE rewritten in terms of these quantities are (cf. Gourgoulhon, 
2012, p.87):

2ij ijL NK
t β
∂ γ
∂

 
− = − 

  				                 (23)

( ){ }2 4 2k
ij i j ij ij ik j ij ijL K D D N N R KK K K S E S

t β
∂ π γ
∂

 
 − = − + + − + − −   

 

						                   (24) 
2 16ij

ijR K K K Eπ+ − = 				                 
						                   (25)
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Figure 9. Possible development of the past spacelike surfaces during the creation week in which time is miraculously advanced more rapidly at distant 
locations resulting in an unfolding of the hyperboloidal sheet as time advances. However, there is nothing fundamentally objectionable to the initial 
surface propagating in time in a way such that the hyperbolic surface is maintained.  If the figure is viewed as a cross section of the FLRW cosmology 
then we note that the portion of the FLRW below the surface labeled “Day 1” did not exist. As remarked in the text, this solution is thus a subset of the 
usual full FLRW cosmology (“Big bang cosmology”).  The surface labeled “Day 1” is to be viewed as the original miraculous creation of space-time 
and the stretching out of the heavens.   If one visualizes the hyperbolic curves advancing up the time axis it is easy to note that the distant light, though 
emitted with large look-back times according to the usual FLRW time coordinate, arrives at the earth within a lapsed time of mere days.  For example, 
since the light ray from “A” to “B” lies entirely within the “sandwich” bounded by surfaces labeled Day 1 and Day 2, the event labeled “A,” though 
potentially a vast distance away, has a light ray that arrives at “B” within 1 day.  Note, by the projections of a, b, c of A, B, and C onto the space axis, 
that light traveled a greater distance, ab , on Day 1 than the distance, bc , on Day 2. Note the figure is not to scale and the curvature of the hyperbolic 
surface is specifiable by the parameter b in the model. As b approaches zero the hyperbolic surfaces approach the null-cone.  Regardless, it should be 
noted that, as drawn, the entire cosmos (in fact, objects at possibly infinite distances and look back times) is visible at the earth on Day 7.



8j
j i i iD K D K pπ− = 				                 (26)

ij i j j iL D Dβγ β β= + 				                 (27)
Lβ  denotes the Lie derivative with respect to the vector fieldβ .

ijK is the extrinsic curvature of the surface Σ  given by

ij i jK nα β
α βγ γ= − ∇ where α∇  is the four-dimensional covariant 

derivative. nβ  
is the 1-form field normal to surface t=constant, and 

n nα α α
β β βγ δ= + is the projector onto the t=constant hypersurfaces. 

ij
ijK Kγ=

ijR is the Ricci tensor for the surface Σ and ij
ijR Rγ= is the Ricci 

scalar.

The following variables are the decomposition of the stress-energy 
tensorT µν in terms of the 3+1 splitting. ijS is the spatial part of the 
stress-energy tensor. ij

ijS Sγ= is its trace.
E  is the energy density

ip  is the momentum density.

Of course, the YEC version of the FLRW given above in equation 
(20), being a solution of the EFE, automatically satisfies the 3+1 
equations.  The initial condition, specified by our creation surface, 
was constructed from the implied embedding of the hypersurface 
in the FLRW cosmology, and it trivially satisfies the dynamic 3+1 
equations.  This 3-metric subsequently propagates in time in a way 

that maintains its curvature.   This is expected since the momentum 
ijπ of the metric was constrained from the embedding within the 

FLRW thus determining the extrinsic curvature ijK in equation 
(23) above and elsewhere.   More interesting cases will result from 
specifying different values for ijK along an initial creation surface.  

CONCLUSION
We have presented a consistent YEC cosmological model that 
satisfies the EFE and reproduces the observational consequences 
of both the FLRW space-time (“big bang”) and any modifications 
such as inhomogeneities.  The model only differs from conventional 
solutions in that it uses an initial condition (“creation hypersurface”) 
that supports a young earth.  There can be no unprejudiced objection 
to this solution.  A prejudiced objection would rest only upon the 
assumption of requiring a naturalistic metaphysics requiring, in 
some sense, a synchronized (and simultaneous) explosion of all 
matter from a white hole by extrapolating a current value of the 
metric backward in a presumed preferred time to a putative initial 
singularity.    Such an assumption is not dictated by GR.  In fact, 
we have seen that GR allows for solutions with regions of differing 
“life times” and “non-simultaneous” (according to a conventional 
time coordinate) big bangs.  This feature of “non-simultaneous” big 
bangs includes the external Schwarzschild solutions for collapsing 
stars and the class of general inhomogeneous L-T cosmologies.  As 
we remarked, this flexibility in the theory allows us to choose an 

Dennis  ◀ Young earth relativistic cosmology ▶ 2018 ICC

28

Figure 10.  Null Cones in a Hyperbolic YEC Cosmology. The horizontal axis is the distance from the earth whose worldline is the time axis on the left.  
Solid lines indicate incoming light.  Dashed lines are the outgoing light.   Note that the global speed of incoming light approaches infinity as distance 
increases.  Conversely the global speed of outgoing light decreases with distance.  Since the model is a solution of the EFE, the local speed of light is 
constant in accordance with the principle of relativity.  This graph is drawn at ‘epoch’ and used a value of a0b=1000 years for the “temporal radius” of 
the hyperbolic surfaces of simultaneity.  Recall that the parameter b specifies the length of time in which an infinitely distant object crosses the particle 
horizon.  This can be seen in the graph as the incoming light cone with the vertex at 1000 years is asymptotically horizontal to t = 0 as ρ approaches ∞.



initial creation surface consistent with the biblical revelation.

The main features of the model presented are (1) its foundation 
on a philosophically and biblically consistent interpretation of 
the temporal aspects of relativistic physics. The model is based 
on presentism, not the eternalist view of time.  (2) Recognition 
that the relativity principle says nothing about the existence of a 
universal cosmic time.  Such a cosmic time is consistent with the 
inability to globally synchronize moving clocks (as in SR) and 
(in light of the freedom of motion by way of non-gravitational 
forces) with the inability to operationally detect, by way of local 
measurements, the value of such a global cosmic time. (3) The 
model otherwise utilizes the conventional mathematical structure 
of GR. And, as mentioned, the solution presented herein is a 
submanifold of the FLRW metric; and, by way of diffeomorphism 
invariance, it will thus reproduce the observational features of GR 
cosmological models (such as the FLRW metrics, for example).  
The only difference between the YEC space-time manifold and 
the FLRW space-time is the specification of the local time to the 
initial creation surface.  It is that initial condition time function 
which specifies the YEC sub-manifold of the FLRW by way of the 
creation surface of simultaneity.  And, as we have stated, GR can 
say nothing about which initial condition is to be accepted.  The 
decision to accept one over another is motivated by philosophical 
and theological presuppositions alone.
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APPENDIX A: PUTNAM ON SPECIAL RELATIVITY 
AND ETERNALISM.
In this appendix we critique Hilary Putnam’s (Putnam, 1995) 
argument for “eternalism.”  

Putnam’s argument is based on the conventional definition of 
“simultaneity” used in Special Relativity (SR).  The purely formal 
definition of simultaneity leads to the false conclusion of Putnam 
& Lewis and eternalism.  The argument endows the surfaces of 
simultaneity (specified by a constant time coordinate in an inertial 
reference frame) with a metaphysical reality. In fact, Putnam endows 
every surface of simultaneity for all inertial observers with a reality.  
That assumption is the core of his rejection of presentism.   This 
argument is thus based on a mistaken notion of the metaphysical 
import of the conventional nature of simultaneity in SR along with 
a non-rigorous application of the use of coordinates in the theory 
of manifolds.  

First, the concept of simultaneity in SR is certainly not a well-
defined concept.  In fact, the argument that SR defeats presentism 
can be distilled down to a reliance on the merely operational 
definition that a spacelike surface with a Minkowski coordinate 
t=constant, in a given inertial reference frame, defines simultaneity, 
i.e. the set of events that are “simultaneous” with the observer.  The 
fact that time coordinates are not invariant under a general Lorentz 
transformation is, of course, a fundamental core of SR.  From the 
conventional definition of simultaneity, it follows, then, that there 
can be no one universal t=constant surface.  But the operational 
method of defining times for remote events only results in mere 
coordinates.   Coordinates, or ways of labeling events, have no 
necessary connection with the reality of events.  A simple counter 
example suffices.  I can certainly, sans relativity, talk about the time 
coordinate for future events, within presentism.  If today is noon 
on Monday the 21st of April, I can speak of an appointment, 24 
hours in the future, on Tuesday the 22nd of April at noon.  Such a 
coordinate label does not thereby make my appointment real at 
the present.  The point is simply that an operational assignment of 
a coordinate value to an event does not necessarily endow it with 

metaphysical significance.  

This point should be entirely noncontroversial.  It is a recognized 
fact of manifolds that the properties of the manifold are independent 
of the coordinate mesh used to label points.  The coordinates 
are entirely arbitrary.  In fact, it is in general necessary to cover 
manifolds with multiple overlapping mappings of coordinates 
known as charts. This is required as many manifolds are not 
homeomorphic to an n-dimensional Euclidean space, nR .

The most ubiquitous example of non-Euclidean coordinates is 
polar coordinates for the standard two-dimensional plane, 2R . 
Another common example are coordinates on the two-dimensional 
sphere, 2S ,  which require more than one chart to cover the surface 
of the sphere.  (Consider transverse Mercator coordinates, and 
polar stereographic coordinates, both of which require at least 
two charts.)  One must be careful drawing conclusions from mere 
coordinates.  The coordinate independent properties of manifolds 
are represented by invariants built from tensors.  Such invariants (or 
other geometrical properties that are independent of coordinates) 
should be used when deducing properties of solutions in SR and 
GR.

Putnam’s argument boils down to the following.  (See Figure 
11).  Putnam considers two observers, “me” and “you.” You are 
moving in the negative direction relative to me. Thus, by the 
Lorentz transformation “my now” ( 0t = ) differs from “your now” 
( 0t′ = ).  Next Putnam asserts that “my now” is “real” to me, or 
that all things that are “simultaneous,” according to the Lorentz 
transformation, with “my now” must likewise be “real” to me, i.e. 
existing at the same moment. This assumption is dubious and, in 
fact, already presupposes eternalism (it thus begs the question).  
Putnam next asserts that all the events with coordinates t=constant 
are “real” to me and, likewise, all the events with t′=constant 
must be “real” to you. This follows from the absence of preferred 
frames of reference.  Finally, since “you” and “me” are coincident 
at 0t t′= = , we are both “real” to each other.  It then follows by 
transitivity that if all events in the hyperspace labeled “you now” 
are real, and “you” are real to “me” at 0t =  and all events in “my 
now” are real to me, then all the events in “your now” are equally 
real to you, and therefore, real to me also and to all the events in 
“my now.” Thus, “my now” and “your now” are equally real.  This 
conclusion is eternalism in a nutshell.  All events in the space-time 
manifold, past, present and future, are equally “real” to you and 
me, and equally real for any, and all, observers.  Thus, time is an 
illusion.

The following observations are relevant to rebutting Putnam’s 
arguments: 

(1) For any observer, the t=constant surface is never actually 
observed – ever!  Observers only see events causally connected to 
the current time by way of the past null cone.

(2) The fact that there are different time labels for a space-time 
event in no way proves there is not a real present.  It only implies 
that such an objective now is not determinable for us – not that it 
does not exist!

(3) Proper time for all observers is not an exact differential (cf. 
equation (2) above).   The methodological process of extending 
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an observer’s local proper time to a global time coordinate is 
necessarily observer dependent – but such a process has nothing 
to say metaphysically about presentism.  This extension of proper 
time is a procedure for consistently labeling locally space-time 
events, and thereby in SR providing a foliation based on nothing 
more than a conceptual parallel transport of an inertial observer’s 
4-velocity that creates a surface-orthogonal vector field.  The author 
(with DeFacio and Retzloff) used such an approach (via invariant 
methods) to derive exact equations of motions for a particle 
observed by arbitrarily accelerating observers.  The analysis 
included equations for both space-like and null-cone foliations.  
For details see DeFacio, Dennis, and Retzloff, (1978, 1979).

(4) Finally, asserting that a constant time surface according to the 

Lorentz transformation is “real” begs the question.  We show below 
that asserting the “reality” of events in an artificial t=constant 
hypersurface leads to absurd conclusions.  We will see that such 
an assumption leads to the conclusion that some events become 
“unreal” since they are not assigned a time.

So then, a simple consideration of the absurdities that ensue in the 
case of accelerated observers from the SR definition of “now” is 
sufficient to rebut the eternalist view.  One interesting case that 
clearly demolishes any metaphysical connection of coordinates to 
simultaneity or of the reality of events is the case of an inertial 
observer who suffers an impulsive acceleration changing his speed 
from zero to speed v relative to an inertial frame S .  (See Figure 
12 below).

Using the Lorentzian operational definition of simultaneity, we 
see that the event E, which was in the future a moment before 
the impulse, instantaneously “jumps” into the past a moment 
after the impulse.  It should be noted that events in the negative 
x direction also jump into the past instantaneously and will in fact 
be simultaneous again in the “future.”  Another anomaly and the 
most egregious is that the event E is never simultaneous with any 
event in the S ′ frame.  Thereby rendering it “unreal” by Putnam.   
It is most odd that an observer undergoing arbitrary local time 
dependent accelerations can instantaneously make entire regions 
of remote events unreal.  This underscores the artificiality of 
Putnam’s analysis and is yet another example in which the historical 
development and terminology of SR leads to misunderstanding and 
a fallacious conclusion.  Unfortunately, such confusions are still 
among trained physicists.

A naïve application of the definition of simultaneity as the 
hypersurface 0t′ = by way of a Lorentz transformation would lead 
one to the conclusion that remote events in the region labeled X −

instantaneously jumped back into the past due to the acceleration 
of the observer at event X + .  Likewise, events in region X + are now 
no longer simultaneous withO .  

This uncritical application of Einstein-Poincare simultaneity yields 
a very bizarre instance of action-at-a- distance time travel!  These 
conclusions are absurd and rest upon (1) an arbitrary definition of 
simultaneity and endowing that property definition with reality; 
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Figure 11. Space-time diagram used in Putnam’s argument for Eternalism.  
You are traveling relative to me in the negative x direction.  By the Lorentz 
transformation and the Einstein definition of “simultaneity” we have 
different sections of space-time that we call “now.”  Putnam asserts that 
all events “simultaneous” with an observer are “real.” At time 0t t′= =  we 
are both at the origin and thus equally real to each other.  By transitivity 
Putnam then argues that (1) “my now” is real to me, (2) you are real to me, 
(3) “your now” is real to you, therefore (4) “my now” and “your now” are 
equally “real” in a timeless cosmos.

Figure 12. An observer S ′ undergoing an impulse acceleration resulting in a change of velocity at time t=0.  After the boost, the observer in the 
primed frame of reference is in an inertial frame moving at velocity v in the positive x-direction of observer S .  A naïve application of the Lorentz 
transformation (LT) to observer S ′ and its extension into regions where the assumptions used in the derivation of the LT do not apply lead to manifestly 
absurd conclusions as described in the text.



and (2) a misapplication of the relativity principle in uncritically 
applying the Lorentz transformation after 0t = , rather than 
deriving a consistent set of coordinates based on the radar-ranging 
method and based on the first principle of special relativity, viz., 
the constancy of the speed of light independent of the observer’s 
speed.  Recall that the Lorentz transformation was derived on the 
assumption of two different inertial observers in uniform relative 
motion; therefore, any uncritical application of the transformation 
to accelerated observers is invalid.
The following derivation of continuous time coordinates based on 
“radar-ranging” is not essential to the main purpose of this paper 
but is provided as an example of a consistent and operational 
construction of coordinates based on the fundamental physics of 
the principle of relativity.  In this regard, it is the same theoretical 
procedure that Einstein used to construct the coordinates in the 
case of globally inertial observers; and illustrates how to avoid 
the pitfalls of naively applying Lorentz transformations to cases in 
which they are inapplicable. 
A correct method is to use radar-ranging. Refer to Figure 13. In the 
radar-ranging method, a light pulse is transmitted by the observer 
in frame S ′ at time At , subsequently reflected from an object at ( ),x t
and then received at time Bt .  (It should be noted that the artificial 
definition of simultaneity based on the LT results in the assignment 
of time coordinates to events that have not yet been observed at 
time 0t = .  It is thus at odds with the very operational construction 
of SR itself.  We note that when using the radar- ranging method – a 
fully operationalist construction – coordinates are always assigned 
to events that lie in the observer’s past; and thus, have already 
occurred.  It is necessarily compatible with the reality of time and 
its flow. This method is thus fully causal and results in causally 
consistent coordinates that can be used for computing physical 
quantities.) 

So, we consider an observer who undergoes an instantaneous 
velocity increase at time t = 0.  (See Figure 12)  Before t = 0, S ′
is an inertial frame coincident with S . After t=0, S ′ is in an inertial 
frame with velocity v in the x-direction relative to S .  
The radar-ranging method consists of the observer emitting a 
light pulse at time 

At′  to a target at a location a distance Bt′  and 
measuring the time of observation of the reflected signal at time

Bt′
. Since the speed of light is invariant we can compute the time of 
reflection based on the clock readings ,B At t′ ′  in frame S ′ as:

( )1
2 B At t t′ ′ ′= +

The range of the object measured by S ′ is then given by:

( )1
2 B Ar t t′ ′ ′= −

We divide Minkowski space into four coordinate charts, labeled
, , ,I II III IVM M M M . These are selected based on the speed of S ′ at 

the time of transmission and reception.  In IM , transmission and 
reception occur when S is at rest relative to S .   Thus, for all events 
in IM , S and S ′ agree as to assigned coordinates:
t t
x x
′ =
′ =

			 

In
IVM , transmission and reception occur when S ′ is moving at 

speed v+ relative to S .  Thus in
IVM , since S ′ is moving at constant 

speed, the full Lorentz transformation applies for all events in S ′ :

2

2

1

1

t vxt
v

x vtx
v

−′ =
−
−′ =
−

In
IIM and

IIIM , however, transmission occurs when S ′ is at rest 
relative to S , and reception occurs when S ′ is moving at speed S
relative to S .  Thus in

IIIM and
IIIM the Lorentz transform does not 

apply and the transformation between the reference frames must 
be derived from first principles.  Finally, note that, in

IIM and
IIIM

the x coordinate is positive or negative, respectively, for the radar 
method.  In IIM the x coordinate is the same as range, while in IIIM
the x-coordinate is the negative of the range.
We now derive the coordinate charts for

IIM and
IIM , using the 

constancy of the speed of light and the time dilation of S ′ clock in 
region IVM .
In region IIM , writing the kinematic equations for the null rays, 
gives:

B B

A

t t x vt
t t x
− = −
− =

or

1B

A

x tt
v

t t x

+
=

+
= −

The radar range equations yield:
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Figure 13.  Radar-ranging method for the frame S ′ .  The observer is not 
globally inertial, but is inertial before and after t=0.  Coordinates are 
assigned by sending a light signal to a distant event and receiving the 
returned signal.  Using the constancy of the speed of light, consistent 
coordinates can be assigned that are physically based on the fundamental 
principle of Einstein’s principle of relativity.



( ) ( )
( )

2

2

1 1' 1
2 2
1 1
2

A B A B

B A

t t t t t v

x t v t

′ ′= + = + −

′ = − −

Substituting the times from the null ray solutions gives:

( )

( )

1'
2
1 1
2 1

1 1 11 1
2 1 1

A Bt t t

vt x x t
v

v vt x
v v

′ ′= +

 −
= − + +  + 

    − −
= + + −       + +     

( )1 1( )
2 1

1 1 11 1
2 1 1

vx x t t x
v

v vt x
v v

 −′ = + − −  + 
    − −

= − + +       + +     

In
IIIM the null rays satisfy:

B B

A

t t vt x
t t x
− = −
− = −

 
or

1B

A

t xt
v

t t x

−
=

−
= + .

Therefore

( ) ( )
( )

2

2

1 1' 1
2 2

1 1
2

A B A B

B A

t t t t t v

x t v t

′ ′= + = + −

′ = − − −

( )

( )

1'
2
1 1
2 1

1 1 11 1
2 1 1

A Bt t t

vt x t x
v

v vt x
v v

′ ′= +

 +
= + + −  − 

    + +
= + − −       − −     

( )
( )

21 1
2

1 1 ( )
2 1

1 1 11 1
2 1 1

B Ax t v t

vt x t x
v

v vt x
v v

′ = − − −

 +
= − − − +  − 

    + +
= + − −       − −     
The resulting coordinate lines for the moving observer are shown 
in Figure 14.  The continuity of the coordinates in both space and 
time and the absence of coordinate anomalies is clear.  It is a global 
and continuous coordinate system derived from first principles of 
relativity.  Every event in the space-time to which coordinates are 
assigned have necessarily been observed since the procedure is 
based on the operational requirements of the principle of relativity.
APPENDIX B: JOINING EQUATIONS FOR THE 
INHOMOGENEOUS “BAR BELL” COSMOLOGY.
We will construct the bar bell cosmology from two FLRW regions 
(labeled “1” and “2”) and a Schwarzschild region labeled “3.”  We 
will use comoving coordinates for constructing a global radial 
coordinate r.  We will take our cue for this coordinate by using 
the embedding diagram and noting that the Novikov coordinate 
uses the maximum radial coordinate of a freely falling particle as 
the constant comoving coordinate of the particle.  We will use that 
feature for the FLRW to convert the usual radial “angular” FLRW 
coordinate to a “linear” radial coordinate.  Figure 15 displays the 
pertinent variables and their relations.  The Schwarzschild region 
lies in the range of Novikov coordinates: 1 2r r r≤ ≤ .

1. Embedding Maps
To construct a mathematically precise solution we will need to 
specify the details of the Schwarzschild region mentioned above.  
To do this we will construct the embedding of a t=constant and

/ 2θ π=  two-dimensional cross section of the Schwarzschild 
geometry with surface metric:

1
2 2 2 221 Mds dr r d

r
ϕ

−
 = − + 
 

To embed this in three-dimensional Euclidean space with metric in 
cylindrical coordinates:

2 2 2 2 2ds dz dr r dϕ= + +

one writes z as a function of r.
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Figure 14.  Radar range coordinates for an observer undergoing an 
impulse acceleration. This is a global and continuous coordinate system 
derived from first principles of relativity. Every event in the space-time 
necessarily has been observed before coordinates are assigned.



Thus obtaining
1 2

2 2 2 2 2 2 221 1M dzds dr r d dr r d
r dr

ϕ ϕ
−     = − + = + +    

     

With solution:
( )2

02
8

z z
r M

M
−

= +

We have introduced the constant z0 which specifies the center of 
symmetry for later convenience.  In anticipation of later analysis, 
we change the variables as follows:
r R
z r
→
→

so that the embedding is specified as:

( )2
02

8
r r

R M
M
−

= +

Now r is no longer the Schwarzschild radial coordinate (“curvature 
coordinate”) but is the Novikov comoving radial coordinate.  
The function R, which corresponds to the Schwarzschild radius, 
is now a function of r and is the radius of the spherical shell at 
Novikov radius r.  We now discuss the Novikov coordinates for the 
Schwarzschild solution.

2. Novikov Coordinates
We will also find it useful to utilize a version of Novikov coordinates 
for the maximal Schwarzschild manifold (Misner et al. 1973, 
pp. 826-7).  Our path to a YEC cosmology will be via stitching 
together subsets of various space-times.  One of these space-times 
will be the FLRW space-times which consists of freely falling 
matter (hence inertial) and which utilize “comoving” coordinates. 
Comoving coordinates have a great interpretational advantage 
since the coordinates are based directly on physical principles.  
Also, since Novikov coordinates are an example of comoving 
coordinates for the Schwarzschild geometry, they will be useful 
for facilitating the joining conditions between the solutions.  When 
we do this, all coordinates are comoving and the time coordinate 
becomes the proper time of all freely falling observers in the 
cosmological solution.  The joining conditions are easier because 
the L-T class of spherically symmetric inhomogeneous solutions 

all use a global comoving coordinate system. 
In a comoving coordinate system each comoving observer is freely 
falling and assigns his elapsed proper time as the time coordinate 
for each event along his world line.  For these coordinate systems 
the ttg  component of the metric tensor is necessarily -1.  The spatial 
coordinates are constant for each observer and consist of the 
spherical coordinates ( ),θ ϕ and (a function of) the radial coordinate 
R which labels the observer’s initial position. As the observer 
free-falls in the gravitational field he follows a geodesic.  That 
geodesic is uniquely determined by the initial point and the four-
velocity.  Each event along the geodesic is thus determined by the 
“arc-length” (i.e. proper time t) along the geodesic and the initial 
position R,θ andϕ . The set of observers for Novikov coordinates 
consists of observers falling from rest at distinct “distances” R 
from an arbitrarily chosen instant of time.  A convenient choice 
is to assume the clocks are synchronized at the instant of maximal 
radius.
Novikov originally used a dimensionless coordinate related to the 
Schwarzschild R (recall our change of coordinate labels above) 
coordinate by:

1
2
Rr
M

= −

For our analysis we will use a dimensional Novikov radial 
coordinate defined as:

0 4 1
2
Rr r M
M

= + −

In this case our metric, in the notation of the L-T solutions (cf. 
equation (5)), becomes:

( )
( )

2
2 2 2 2 2

1 2
R

ds dt dr R d
E r
′

= − + + Ω
+

(where we now omit the asterisk and, as mentioned previously, set 
the radius function as R(t,r) rather than r).  The function E(r), which 
is a measure of the free-falling particle’s energy, will be discussed 
below when we examine time-dependent spherically symmetric 
space-times of the Lemaître, Tolman, Bondi (L-T) family.
In each of the FLRW regions the solution is:
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Figure 15. Profile of embedding diagram of “bar bell” cosmology. Construction of global radial comoving coordinate “r”

r1r 2r

R

1 1χ α=
2 2χ α=

( )1 0a

( )2 0a
( )1 0a

3r



( )( )
( )( )

2 2 2 2 2 2
1 1 1 1

2 2 2 2 2 2
2 2 2 2

sin

sin

ds dt a t d d

ds dt a t d d

χ χ

χ χ

= − + + Ω

= − + + Ω

The “angular” radial coordinates χ are measured from the two 
poles of the closed cosmology.  The angles 

2α  and 
2α correspond 

to linear coordinates 
1r  and 

2r , respectively.
The parametric solutions for Rk and tk in terms of the “cycloidal” 
parameter η  are:

( )

( ) ( )

(0)sin( , ) 1 cos
2

(0) sin
2

k k
k k

k
k

aR

at

χη χ η

η η η

= +

= +	

(0)ka for k=1,2 is the maximum radius of the regions 1 and 2 
at maximum expansion at 0η = .  The parameterη ranges over
[ ],π π−  

.  The big bang occurs atη π= − and the big crunch atη π= .

The above solution is obtained from the general L-T solutions:

( )

( )
( )

( )3/2

( )( , ) 1 cos
2 ( )

( ), sin
2 ( )

k k
k k

k k

k k
k k

k k

MR
E
Mt
E

χη χ η
χ
χη χ η η
χ

= +
−

= +
−

The function M and E are given by:
3( ) (0)sink k k kM aχ χ=

21( ) sin
2k k kE χ χ= −

The joining of the three regions is performed by requiring continuity 
of the functions M and E.  Clearly the function M is continuous if 
there are no delta-function surface layers, which is the case for our 
model.
A property of the closed universe is that the total gravitational mass 
is zero.  Thus

( )max 3

0

4 0, 0
3

r

total
dM r R dr
dr

π ρ  = = ∫
In the Schwarzschild region 0ρ = ; therefore the only contributions 
to

totalM  are in the FLRW regions

( ) ( )

( ) ( )

1 max

2

3 3
1 20

3 3
1 1 2 2

4 40 0 0
3 3

4 0 (0, ) 0 (0, )
3

r r

r

d dR dr R dr
dr dr

R r R r

π πρ ρ

π ρ ρ

   = +   

 = − 

∫ ∫

Therefore, 1 2( ) ( ) / 2gM M rα α= =  where 2gr M= is the 
“gravitational” radius in the Schwarzschild region.
Thus 

3 3
1 1 1 2 2 2( ) (0)sin ( ) (0)sin / 2gM a M a rα α α α= = = =                    (28)

To relate the angular variable χ to the linear coordinate r, we define 
the linear radial coordinate of points in the FLRW regions by their 
projection onto the “r” axis of the embedding space at maximal 
expansion.  At the boundary points 1r  and 2r  we then have the 
following relation between χ and r

( )1 1 1(0) 1 cosr a α= −

2 3 2 2(0)cosr r a α= +

In region 3, we proceed similarly and write the solution in Novikov 
coordinates:

( )
( )

2
2 2 2 2 2

1 2
R

ds dt dr R d
E r
′

= − + + Ω
+

Where the parametric solutions are:

( )2
0

1(0, )
4g

g

R r r r r
r

= + −

We can now solve for the “gravitational” center of the Schwarzschild 
region:

( )2
1 1 0 1 1

1(0, ) (0)sin
4g

g

R r r r r a
r

α= + − =

Therefore

( )2 2 3
1 0 1 1 1

1 sin (0)sin
4g g

g

r r r a r
r

α α
 

+ − = = 
   	  
And solving for r0

( )2 2 2
1 0 1 1

1 sin cos
4 g

g

r r r
r

α α− =

0 1 12 cotgr r r α= −
						                   (29)
The matching at the other boundary yields:

0 2 22 cotgr r r α= −

Using these relations, we obtain the embedding diagram shown in 
Figure 5.
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